Indian Journal of Mathematics

(Golden Jubilee Year Volume) Volume 50, No. 2, 2008

CONTENTS WITH ABSTRACT

P. N. Natarajan

Root test and ratio test in context of Nörlund and Y summability of series in non-archimedean fields 239-244

Abstract: In this note, we prove the utility of Cauchy's nth root test and D'Alembert's ratio test in the context of Nörlund and Y summability of series in a complete, non-trivially valued, non-archimedean field of characteristic zero.

Zhi-Gang Wang and Yue-Ping Jiang

A NEW GENERALIZED CLASS OF NON-BAZILEVIČ FUNCTION DEFINED BY BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION 245-255

> Abstract: In the present paper, we introduce a new generalized class $\mathcal{N}(\alpha, \mu, A, B)$ of non-Bazilevič functions. Such results as subordination and inclusion relationships, coefficient inequalities and sufficient conditions for functions belonging to its subclasses are proved by making use of the techniques of Briot-Bouquet differential subordination.

Ekaterine Kapanadze and Tengiz Kopaliani

ON THE VOLTERRA-TYPE INTEGRAL OPERATORS IN BANACH FUNCTION SPACES 257-270

> **Abstract:** In this paper we study Volterra-type integral operators $K : X \to Y$, where X, Y are Banach function spaces on \mathbb{R}_+ and their kernels belong to classes $P_n \cup Q_n$ introduced by R. Oinarov. As a consequence we obtain a criterion for boundedness of these operators in generalized Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}_+)$.

İ. Zorlutuna

More on semi α -preirresolute functions 271-281

Abstract: In this paper we give some new characterizations of semi α -preirresolute functions and also investigate some special properties of them. Moreover, we characterize PS-spaces by involving these functions.

Lucyna Rempulska and Karolina Tomczak

Approximation properties of certain operators of the Szász-Mirakyan type 283-295

Abstract: Using the Jakimovski-Leviatan method from the papers [3, 2], we introduce positive linear operators connected with hyperbolic functions and we study their approximation properties. This paper is motivated by articles [1-5].

Cihan Özgür and Sibel Sular

On some properties of generalized quasi-Einstein Manifolds 297-302

> **Abstract:** This paper deals with generalized quasi-Einstein manifolds. We find the necessary condition for a generalized quasi-Einstein manifold being Ricci-pseudosymmetric. Furthermore, we prove that a 2-quasi umbilical hypersurface in a Riemannian space

form is generalized quasi-Einstein. We also give some examples of generalized quasi-Einstein manifolds.

George L. Karakostas

An extension of Hölder's inequality and some results on infinite products 303-307

> **Abstract:** In this article we give an extension of Hölder's inequality and use it to solve some min-max problems concerning infinite products.

Sui Sun Cheng and Rigoberto Medina

ARTIFICIAL NEURAL NETWORKS THAT ADMIT SYNCHRONIZATION

Abstract: An artificial neural network is built that uses the Kohonon learning rule involving a time dependent parameter. Sharp conditions are established so that our network admits synchronization.

John R. Greaf, Johny Henderson and Bo Yang

Positive solutions to a singular third order Nonlocal boundary value problem 317-330

Abstract: The existence of a positive solution is shown for the third order nonlocal boundary value problem, y''' = f(x, y), $0 < x \le 1$, $y(0) = y'(p) = \int_q^1 w(x)y''(x)dx = 0$, where $\frac{1}{2} are fixed, and where <math>f(x, y)$ is singular at x = 0, y = 0, and possibly at $y = \infty$. The method involves a fixed point theorem for operators that are decreasing with respect to a cone.

309-316

Nasser Shahzad

RANDOM FIXED POINT	RESULTS FOR CONTINUO	DUS
PSEUDO-CONTRACTIVE	RANDOM MAPS	331-337

Abstract: Some random fixed point results for continuous pseudocontractive random maps are established.

B. Bhowmik, S. Ponnusamy and K. -J. Wirths

UNBOUNDED CONVEX POLYGONS, BLASCHKE PRODUCTS AND CONCAVE SCHLICHT FUNCTIONS 339-349

> Abstract: We consider conformal maps f of the open unit disc onto a concave domain, i.e. a domain whose complement with respect to is convex and unbounded. We say that f is a concave schlicht function if f is a concave domain. We also fix an opening angle for the domain f at ∞ which is less than or equal to πA , $A \in (1,2]$ and denote this class of functions by CO(A). In this paper we prove a representation formula using Blaschke products for those members f of CO(A) for which the exterior of f is a convex unbounded polygon. Further, we present some examples supporting our conjecture that these polygonal maps are extreme points of the class CO(A).

Xiaofen Lv and Xiaomin Tang

EXTENDED CESÀRO OPERATORS BETWEEN BERGMAN SPACES AND BLOCH-TYPE SPACES IN THE UNIT BALL 351-363

Abstract: In this paper, we characterize the boundedness and compactness of the extended Cesàro operator T_g between the weighted Bergman space and Bloch-type space, where T_g is defined by $T_g f(z) = \int_0^1 f(tz) \Re g(tz) \frac{dt}{t}$

Arif Rafiq

Iterative solution of nonlinear equations involving generalized ϕ -hemicontractive mappings 365-380

Abstract: In this paper, we study the strong convergence of the three-step iterative process for generalized Φ -hemicontractive mappings under modified suitable conditions.

Xiangling Zhu

A CLASS OF INTEGRAL OPERATORS ON WEIGHTED BERGMAN SPACES WITH A SMALL PARAMETER 381-388

Abstract: Some sufficient conditions are provided for a class of integral operators to be bounded from weighted Bergman spaces or pluriharmonic function spaces to Lebesgue spaces on the unit ball, with a small parameter.

V. V. Basava Kumar and S. R. Koneru

JACOBI METHOD FOR LINEAR AND NONLINEAR SYSTEMS 389-399

Abstract: The eigen values of the Jacobian matrix of the system of equations arising out of discretization of a two dimensional quasilinear elliptic equation with Dirichlet data, are shown to be negative under certain conditions involving quantities which are dependent on the differential expression. Similar results are obtained for the mildly nonlinear problem with Neumann data and upper bound for the spectral radius of the Jacobi matrix for solving the discretized system is obtained. Convergence of the modified Jacobi method is discussed.

Surjit Singh Khurana

Lebesgue topology on $L^{\infty}(X, E')$ 401-405

Abstract: For a Banach space E with E' its dual, we prove that the Mackey topology $\tau(E', E)$ is the finest linear topology agreeing with itself on the bounded subsets of E'. If, in addition E is reflexive Banach lattice and (X, \mathcal{A}, μ) is a a finite measure space, then $(L^{\infty}(X, E'), \tau(L^{\infty}(X, E'), L^{1}(X, E)))$ is the finest locally convex Lebesgue topology on $L^{\infty}(X, E')$.

Belmannu Devadas Acharya, Mukti Acharya and Deepa Sinha

Cycle-compatible signed line graphs

407 - 414

Abstract: A signed graph is an ordered pair $S = (G, \sigma)$ where G = (V, E) is a graph and σ is a function, called the signature of S, that assigns a weight +1 or -1 (often called a 'sign') to every edge, accordingly designating it as being either positive or negative. Similarly, a marked signed graph is a signed graph each vertex of which is designated to be positive or negative. A marked signed graph S is cycle-compatible if for every cycle Z in S the product of the signs of its vertices equals the product of the signs of its edges. Given signed graphs $S = (G, \sigma)$ and $\Gamma = (H, \xi)$ the signed graph Γ is S-cycle-compatible if $H \cong L(G)$ and for every cycle Z in Γ ,

$$\prod_{e_1e_2 \in E(Z)} \xi(e_1e_2) = \prod_{e \in V(Z)} \sigma(e).$$

In this paper, we give a characterization of a signed graph S whose signed line graph L(S) is *S*-cycle-compatible.

Takanori Ibaraki and Wataru Takahashi

WEAK CONVERGENCE THEOREMS FOR A FINITE FAMILY OF GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES AND APPLICATIONS 415-428

> **Abstract:** In this paper, we introduce an iterative sequence to approximate a common fixed point of a finite family of generalized nonexpansive mappings in a Banach space. Then, we prove a weak convergence theorem for the finite family of generalized nonexpansive mappings. Using this result, we obtain some weak

convergence theorems concerning generalized nonexpansive mappings. In particular, we apply our result to solve the feasibility problem in Banach spaces.

Vladimir Tulovsky

On eigenfunctions and eigenvalues of the Schrdinger operator I $$429\-455$$

Abstract: The goal of this paper is to present a new method for finding approximation of eigenfunctions and eigenvalues of the one-dimensional Schrödinger operator. The novelty of the method is that it is based on construction of exponentially increasing solutions. This approach has some advantages because exponentially increasing solutions are relatively stable, whereas eigenfunctions are always unstable.