Indian Journal of Mathematics

Volume 37, No. 2, 1995

CONTENTS

Mathew He

ON THE ZEROS OF WEIGHTED FABER POLYNOMIALS

79 - 93

Abstract: Weighted Faber polynomials $\{F_n(z;g)\}$ associated with a domain E and a weight function g(z) play a very important role in the study of the asymptotic properties of orthogonal polynomials in the complex domain. Here, we present a new determinant representation of $\{F_n(z;g)\}$ which relates the zeros of $\{F_n(z;g)\}$ to the eigenvalues of a certain matrix and study the location and the asymptonic distribution of the zeros of $\{F_n(z;g)\}$ mainly in dependance on the smoothness of the weight function and the boundary of the domain.

S. Fridli

MEAN CONVERGENCE OF WALSH-FOURIER SERIES

95-101

Abstract: It is known that the integrability of a function does not gaurantee the convergence of the corresponding Walsh-Fourier series. An additional condition that implies the convergence can be made by the L^1 modulus of continuity-Dini-Lipschitz condition-, or by requiring that the function belongs to the narrower space, say $L^p[0,1)(1 . Another possibility is to give a convergence condition with respect to the Walsh-Fourier coefficients. In this paper we formalize such a condition by means of a shifted Sidon type inequality for the Walsh-Dirichlet kernels and by using the concepts of dyadic Hardy space and generalized de la Valleé Poussin means.$

Tai-Jan Huang And Young-Ye Huang

FIXED POINT THEOREMS FOR LEFT REVERSIBLE SEMIGROUPS IN COMPACT MATRIC SPACES \$103-105\$

Abstract: It is shown that a left reversible semigroups of contractive selfmaps on a compact metric self space (M, d) has a unique fixed point ξ and for any x in M and any t in S and any t in S the iterates $t^n x$ converges ξ .

Z. Govindarajulu

A NOTE ON TWO-STAGE FIXED-WIDTH INTERVAL ESTIMATION PROCEDURE FOR NOR-MAL VARIANCE 107-112

Abstract: A large-sample two-stage solution is obtained for the problem of setting fixed-width confidence intervals for the normal variance. This method yields a sub-stantial reduction in the second sample size required by other existing methods.

E. Kurpinar And SH. Guseinov

THE BOUNDEDNESS OF SOLUTIONS OF SECOND-ORDER DIFFERENCE EQUATIONS

Abstract: In this note, some simple conditions for the boundedness of all solutions of a second-order difference equations on the half-line are given.

B. Mond And J. Pečarič

A SIMPLE PROOF OF GENERALIZED INEQUALITIES OF BHAGWAT AND SUBRAMANIAN AND SOME CONVERSE RESULTS 123-128

Abstract: Bhagwat and subramanian powers of positive operators. Here a simple proof of generalization of these inequalities is given. Converses for some special cases are also established.

Sang Chul Lee And Byung Soo Lee

SOME	GENERALIZ	ATIONS	OF	MINIM	IAX	INE	QUALITY			129-135	
				_	-			_		 -	

Abstract: We obtain a generalized minimax inequality using H - KKM theorem.

Shih-Sen Chang And Yi-Hai Ma*

KKM TECHNIQUE AND ITS APPLICATIONS^{*} 137-150

Abstract: In this paper, the Knaster-Kuratowski-Mazurkeiwicz technique (KKM technique, in short) is presented. Using the technique a new alternative theorem and a new coincidence theorem are established. The results obtained in the paper unity and generalize the corresponding results in the recent works [2,10,11,15,16].

Adrian Constantin

A RANDOM INTEGRAL EQUATION WITH APPLICATIONS 151-163

Abstract: We will investigate the existance, uniqueness and asymptotic behavior of the random solution for the stochastic integral equation

$$x(t;w) = h(r;w) + \int_0^t k(t,s;w) f(s,x(s;w)) ds, \quad t \ge 0.$$

and we give some examples of equations of this form which arise in hereditary mechanics and population growth modeling.

A. K. Nandakumaran And Raju George

PARTIAL EXACT CONTROLLABILITY OF A LINEAR THERMOELASTIC SYSTEM

165-174

Abstract: In this article, we prove the partial exact controllability of a one dimensional linear thermoelastic system. We use RHUM method which is a variation of HUM method to study the present system.
